
Labeled and optional arguments for Objective Caml∗

Jacques Garrigue†

Abstract

We added labeled and optional arguments to the Objective Caml language, combin-
ing currying and commutation. Contrary to a previous attempt, the formal system we
present here defines semantics of both out-of-order application and optional parameter
discarding independently of types. We extend the ML type system to cope with these
new features, and show how types can be used to obtain an efficient compilation method.

1 Introduction

There is a huge gap between computer language syntax and natural language. While both
can be seen as sequences of sentences —definitions, statements and questions— held together
by a rather large set of connectives, the freedom in how to write these sentences is almost nil
in programming languages.

Stylistic freedom, and ability to omit some implicit parts of a sentence is sometimes
shunned as sloppiness. However, anybody who writes often enough knows that style matters,
and that even omitting implicit facts may make your exposure clearer.

Where we should bother about sloppiness is in the semantics, and in the way people
actually write programs, but not in what they are allowed to write. Certainly we do not
want to trade away a simple and well defined semantics for a complex and ambiguous one.
In this respect overloading is not an universal solution. While there is an argument about
overloading being omnipresent in natural language, programming languages intend to avoid
ambiguities, and overloading very soon creates some.

By introducing labeled arguments in the syntax, we are able to propose a mechanism
which provides flexibility in the function call syntax, allowing various parameter orders [AKG95,
GAK94], and the omission of implicit parameters. Yet, it does so in a purely syntactic man-
ner: types, and overloading, do not intervene in the resolution of the function call. One can
still understand a program as a formally evaluated expression, that resolves to a result on the
sole basis of its data contents. This is similar to named parameters in Common Lisp [Ste84],
and to a lesser degree call patterns in Smalltalk [GR83], but we add types and currying.
Inferred labeled types annotate expressions, without affecting their evaluation. Types play
an important role in compilation, allowing one to produce efficient code, which respects the
semantics while computing in a different, more efficient manner.

This mechanism, which departs slightly from the one designed by Jun Furuse [FG95] and
used in Objective Label [Gar99], is now included in the Objective Caml language [LDG+00].
The main differences with the previous formalism are that resolution of optional arguments
does not rely on types anymore, and full compliance with the call-by-value semantics.

From a technical point of view, the contribution of this paper is a reduction system
combining currying, labeled and optional arguments. Works by others [Lam88, Dam98] did
not consider the full combination of currying and commutation (some kind of non-commuting
closure operation is needed between passing groups of parameters), and the Objective Label
approach had to rely on types for optional parameters. More practically, we give here the
first formal account of the semantics of labels in Objective Caml 3, hoping that this will help
improve the understanding of this feature.
∗Revised version of 2000-04-12, there was a bug in reduction rules.
†Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa-oiwakecho, KYOTO 606-

8502. E-mail: garrigue@kurims.kyoto-u.ac.jp. Web: http://wwwfun.kurims.kyoto-u.ac.jp/~garrigue/.

After giving a few examples of the intended uses, we give a formal description of the
system, of its typing, and explain how it can be compiled efficiently. We also shortly describe
an alternative semantics, intended to make mixing of labeled and non-labeled code easier.

2 Labels at work

Originally labels were introduced in Objective Label’s libraries as proof-of-concept experi-
ment. However they fast appeared to be both useful and comfortable. This feeling of comfort
may be surprising, since contrary to what happens in Ada [Led81], a language not specially
known for its conciseness, labels in Objective Label are a compulsory feature. That is, if a
function makes use of labeled arguments, then these arguments must be imperatively labeled
at every call site.

Here are the types of some functions of the Objective Caml 3.00 standard library.

output : out_channel -> buf:string -> pos:int -> len:int -> unit
Hashtbl.add : (’a, ’b) Hashtbl.t -> key:’a -> data:’b -> unit
List.map : f:(’a -> ’b) -> ’a list -> ’b list

Non-optional labels appear in types as label:, just before the type of the labeled argument.
This kind of compulsory labels have two goals: to disambiguate the role of an argument,

and to allow commutation between parameters. The first one improves readability of pro-
grams by avoiding having to refer to external documentation, and the second also improves
readability, by giving more freedom in the layout of programs. Commutation is only available
when the Objective Caml interpreter is started with the -labels option.

output stdout ~buf:"Hello world" ~pos:0 ~len:5;;
Hello- : unit = ()
List.map ["a";"b"] ~f:(fun s -> "This is ’" ^ s ^ "’");;
- : string list = ["This is ’a’"; "This is ’b’"]
Hashtbl.add ~key:5;;
- : (int, ’a) Hashtbl.t -> data:’a -> unit = <fun>

In function applications, labels appear as ~label:, to avoid confusion with type annotations.
Partial applications are allowed: arguments which were not given are kept abstract.

One can also define functions taking labeled arguments, both compulsory and optional
(prefixed by “?”). Optional parameters bind their variable to Some v if an actual value was
passed, and None if it was omitted. Internally an optional parameter is of type τ option =
Some of τ | None.

let rec gcd ~m ~n =
if n = 0 then m else gcd ~m:n ~n:(m mod n);;
val gcd : m:int -> n:int -> int = <fun>
let exp ?base x =
let base = match base with None -> 2.0 | Some b -> b in
base ** x;;
val exp : ?base:float -> float -> float = <fun>
exp 3.0;;
- : float = 8.000000
exp ~base:3.0 3.0;;
- : float = 27.000000
exp 3.0 ~base:3.0;;
- : float = 27.000000
let exp’ ?(base = 2.0) x = base ** x;;
val exp’ : ?base:float -> float -> float = <fun>

Since in most cases label and variable share the same name, we use ~name as an abbreviation
for ~name:name, and similarly ?name is ?name:name. The basic rule for discarding an
optional parameter is to omit it when a non-labeled parameter appearing after it is passed.

2

[Beta]

(. . . ((fun l̃i:x→ e) l̃1:e1 . . .) . . . l̃i:ei . . . l̃n:en) when li 6∈ {l1 . . . li−1}
→ (. . . (e[ei/x] l̃1:e1 . . .) . . . l̃i−1:ei−1 l̃i+1:ei+1 . . . l̃n:en)

[Beta-Some]

((fun ?li:x→ e) l̃1:e1 . . . l̃n:en) when li 6∈ {l1 . . . li−1}
→ (e[Some(ei)/x] l̃1:e1 . . . l̃i−1:ei−1 l̃i+1:ei+1 . . . l̃n:en)

[Beta-None] when li = ∅ and l 6∈ {l1 . . . ln}
((fun ?l:x→ e) l̃1:e1 . . . l̃n:en)→ (e[None/x] l̃1:e1 . . . l̃n:en)
[Merge] when ∅ 6∈ {l1 . . . lm}
((e l̃1:e1 . . . l̃m:em) l̃m+1:em+1 . . . l̃n:en)→ (e l̃1:e1 . . . l̃n:en)
[Let] let x = e1 in e2 → e2[e1/x]

Figure 1: Reduction rules

Note that this requires considering application as a n-ary operation, since we still want to
be able to commute optional and non-labeled arguments in the same function call. Some
syntactic sugar is available to give a default value to optional arguments: the definition of
exp’ expands to the same code as exp. Notice that optional parameters are stronger than
parameters with a fixed default value: the default value may be computed, or we may choose
to do something completely different according to the call pattern.

In practice optional parameters are often used to pass attribute values, and can be very
numerous. Here is the type of the frame creation function in LablTk, the idea being to have
the most natural syntax: attributes are just parameters to the widget creation call, like they
would probably be in non-statically typed languages like Lisp, Tcl or a command-line shell.

Frame.create :
?name:string -> ?background:Tk.color -> ?borderwidth:int ->
?clas:string -> ?colormap:Tk.colormap -> ?cursor:Tk.cursor ->
?height:int -> ?highlightbackground:Tk.color ->
?highlightcolor:Tk.color -> ?highlightthickness:int ->
?relief:Tk.relief -> ?takefocus:bool -> ?visual:Tk.visual ->
?width:int -> ’a Widget.widget -> Widget.frame Widget.widget

A more detailed presentation of labeled and optional arguments can be found in the
tutorial part of [LDG+00].

3 Syntax and reduction semantics

We define a simplified version of the syntax. It departs from traditional lambda-calculus
with let-polymorphism by the introduction of labels (both optional and non-optional) in
abstractions, and the fact that application is n-ary (and labeled).

l ::= ∅ | <name> labels
e ::= x variable

| fun l̃:x→ e labeled abstraction
| fun ?l:x→ e optional abstraction
| let x = e in e polymorphic let
| (e l̃:e . . . l̃:e) n-ary application

Non-labeled argument are just handled as arguments labeled by ∅.
In figure 1, we need to replace β by 3 reduction rules: normal case, optional present case,

and optional absent case. The [Merge] rule has only an administrative role. The last rule is
usual let-reduction.

[Beta] may look complex, because it preserves the multi-application structure, but all it
does is selecting the first argument with the right label. Without multi-application, we can

3

Γ, x : ∀α1...αn.τ ` x : τ [τ1...τn/α1...αn]

Γ, x : τ1 ` e : τ
Γ ` fun l̃:x→ e : l:τ1 → τ

Γ, x : τ1 option ` e : τ
Γ ` fun ?l:x→ e : ?l:τ1 → τ

Γ ` e1 : τ1 Γ, x : ∀FTV(τ1) \ FTV(Γ).τ1 ` e2 : τ2
Γ ` let x = e1 in e2 : τ2

Γ ` e0 : o1 l1:τ1 → . . .→ on ln:τn → τ0 Γ ` e1 : τσ1 . . . Γ ` em : τσm
Γ ` (e0 lσ1 :e1 . . . lσm :em) : erasek(oσm+1 lσm+1 :τσm+1 → . . .→ oσn lσn :τσn → τ0)

oi is an optional mark, that is either nothing or “?”.
σ is a permutation of [1, n] such that (1) a label does not commute with itself: if i < j
and li = lj then σi < σj , and (2) extra parameters are kept in order: if i < j and
σi > m and σj > m then σi < σj .
k is the number of parameters remaining that appeared in the type before a non
labeled argument that was passed: |{i ∈ [1, n] | σi > m ∧ (∃j > i) lj = ∅ ∧ σj ≤ m}|.

erasek(τ) is inductively defined as

{
erase0(τ) = τ
erasek+1(?l:τ1 → τ) = erasek(τ)
erasek+1(l:τ1 → τ) = l:τ1 → erasek(τ)

Figure 2: Typing rules

write it in a much simpler form:

(fun l̃n:x→ e) l̃1:e1 . . . l̃n:en → e[en/x] l̃1:e1 . . . l̃n−1:en−1

Multi-application structure is needed for optional arguments. [Beta-Some] does basically the
same thing as [Beta], selecting the first occurrence of an argument with label li, and substi-
tuting the argument Some ei for x in the body of the function, but li is restricted to appear
in the first multi-application. Symmetrically, [Beta-None] handles the case when there is no
argument with label l, but there is a non-labeled argument, meaning that the parameter was
omitted; then None is substituted for x.

If there is no non-labeled argument in a multi-application, then it may be merged with
the next englobing multi-application, with [Merge]. This is coherent with the [Beta-Some] and
[Beta-None] rules, and gives them new chances to apply.

4 Typing

Types are the usual monotypes and polytypes of the Hindley-Milner polymorphic type sys-
tem. The arrow is labeled, and split in two cases: non-optional and optional label.

τ ::= α | l̃:τ → τ | ?l:τ → τ
σ ::= ∀α...α.τ

Typing rules are given in figure 2. The two abstraction rules reflect labels in the syntax
at the type level. The application rule looks complex, essentially because it integrates all the
commuting and discarding machinery.

Contrary to [FG95], commutation is not integrated here as a congruence on types, but as
a permutation σ which allows a reordering of parameters during application. The handling
of optional arguments differs also: erasek(τ) matches the untyped rules, rather than being a
definition by itself.

Theorem 1 (Subject Reduction) If Γ ` e : τ and e→ e′, then Γ ` e′ : τ .

While we have the subject reduction property, our system is weaker than Hindley-Milner,
in that it doesn’t enjoy the principal type property, an immediate consequence being the
absence of complete type inference algorithm. On the other hand, there is a straightforward

4

partial inference algorithm, and experience shows that type annotations are almost never
required: it is enough to be able to use out-of-order application and optional arguments on
known functions. On unknown functions, the partial algorithm may assume a wrong type,
and fail later:

let f g = g ~y:0 ~x:1;;
val f : (y:int -> x:int -> ’a) -> ’a = <fun>
f (fun ~x ~y -> x - y);;
This function should have type y:int -> x:int -> ’a
but its first argument is labeled ~x

In [FG95], we attempted to solve this problem by allowing label commutation in some types,
but the way it was compiled created potential gaps with call-by-value semantics (it was
correct in a call-by-name setting), and moreover we could not allow commutation in more
complex cases, like the types of object methods, or when optional arguments are implied.

5 Call-by-value evaluation

In order to define a precise notion of call-by-value evaluation for this calculus, we need to
define what are values and evaluation contexts. In turn, this formal definition of call-by-value
will tell us what the compiler should preserve of the reduction semantics.

v ::= x | fun l̃:x→ e | fun ?l:x→ e head-normal
| (. . . ((fun l̃:x→ e) l̃1:v . . .) . . . l̃n:v) when l 6∈ {l1, . . . , ln}
| ((fun ?l:x→ e) l̃1:v . . . l̃n:v) when ∅ 6∈ {l1, . . . , ln}

While the reason for making application of a normal abstraction on differing labels a value
is clear —there is no β-rule to reduce this term—, the last case is more surprising, since
there are actually rules to reduce this instance of application (whenever l ∈ {l1 . . . ln}). This
just means that when such an application will be evaluated is left undefined: it may happen
sooner, later, or never1. The reason we want to allow delaying the evaluation of such a
redex will be explained in section 6. We would obtain the same freedom by assuming that
no side-effect is caused until the residual of this term is applied to a non-labeled argument,
which sounds like a reasonable assumption, but this cannot be easily enforced.

E ::= [] hole
| let x = E in e let-bound value
| (E l̃:e . . . l̃:e) application head
| (e l̃:e . . . l̃:E . . . l̃:e) application argument

Again evaluation contexts do not specify in which order the different parts of an application
should be evaluated. We can even evaluate an argument before the function itself is evaluated.

Finally, in call-by-value semantics, reduction rules only apply when a redex composed
only of values appears in an evaluation context.

[Betav] (v l̃1:v1 . . . l̃n:vn)→ e

E[(v l̃1:v1 . . . l̃n:vn)]→v E[e]
[Letv]

E[let x = v in e]→v E[e[v/x]]

Now we can define call-by-value reduction ⇒v as the repeated rewriting of the root of a
term e, leading to a value v.

e→v e1 →v . . .→v en →v v

Since we allow some freedom in the semantics, there may actually be several paths from e to
v, and in the presence of side-effects the final result v may vary. An evaluator or a compiler is
correct if it is sound —any result it computes can be derived by the call-by-value reduction—,
and partially complete —it may be non-terminating only if there is an infinite call-by-value
reduction path.

1We might actually fully define it by adding the symmetrical constraint to [Merge-Opt], but not doing so
leaves more freedom to the compiler. We just follow here Objective Caml’s design, in which the evaluation
order of the parts of an application redex is not specified.

5

6 Compilation

Compilation is type-directed, and of course correct with respect to the call-by-value seman-
tics. We do not describe it formally here, since it is straightforward, thanks to the strict
correspondence between terms and types. Let’s just see how it works on a few examples. If
f has type pos:int→ ?len:int→ string→ string, here are some labeled applications and
their translations.

Labeled Translation

(f "Hello" ~len:2 ~pos:3) f 3 (Some 2) "Hello"

(f "Hello" ~pos:3) f 3 None "Hello"

(f ~len:(5-2)) let len = 5 − 2 in fun pos → f pos (Some len)
(f "Hello") fun pos → f pos None "Hello"

The first case is the “normal” one: all arguments are given, in some arbitrary order. Since
we have the type of the function, we can pass them in the proper order. Notice also that
since the order of evaluation of arguments is not specified anyway, we do not need to take
any special care for preserving semantics in this case.

The second case is an omitted argument. It is silently replaced by None. Again a labeled
application is just compiled into an unlabeled one.

The third and fourth cases are out-of-order applications. They require eta-expansion
to be compiled correctly. We must be careful about not changing the order of evaluation:
arguments must be computed before building the closure.

All the above examples were optimal in their compiled form: this is exactly what one
would write by hand, if labeled arguments were not available. Now let’s consider two functions
g : pos:int → len:int → string → string and h : ?pos:int → ?len:int → ?stride:int →
string→ string.

Labeled Translation

(g "Hello") fun pos → let g1 = f pos in fun len → g1 len "Hello"

(h ~stride:2) fun pos → fun len → h pos len (Some 2)

Applying g is somehow less than optimal: we build a closure g1 by partially applying it
on pos, to be sure that we conform with the call-by-value semantics, and have all side-effects
in the expected order. Yet there is a high probability that such a partial application is not
side-effecting anyway, so that this costly code is not needed. Luckily, you have rarely enough
parameters in a function for it to be a real problem.

But, as seen in section 2, a function may have lots of optional parameters. Were you to
partially apply on the last of them, and (taking Frame.create as example) you would end
up building 13 useless closures in a row! This is why applying a function on an optional label
is handled as a value in the semantics: then you are free to delay evaluation until application
on a non-labeled parameter forces it. This is what is done with h. A strict semantics would
have required a closure here also, but simple eta-expansion is enough with our weaker notion
of value.

7 Alternative semantics

The semantics we defined above form a conservative extension of the original Caml semantics.
However, when integrating these features in an existing system, the question of libraries is
paramount. If they are left without labels, then the use of labels would be restricted to new
libraries, loosing the benefits of having them in the standard library. On the other hand,
adding labels to the standard library would break source code compatibility.

After considering various alternative, including using two sets of standard libraries, we
settled for having yet another semantics: the classic mode. This is actually the default
mode of the Objective Caml system. It trades commutation of non-optional arguments for
the ability to omit labels. Thanks to this, labels can be freely added to libraries, without
breaking compatibility with legacy code. Yet, this mode is fully functional, and you can both
use labels (to catch some errors) and optional arguments in programs.

6

[Beta]

(fun l̃:x→ e) l̃′:e′ → e[e′/x]
[Beta-Some] when {l, ∅} 6∩ {l1 . . . ln}
(fun ?l:x→ e) l̃1:e1 . . . l̃n:en l̃:e′ → e[Some(e′)/x] l̃1:e1 . . . l̃n:en
[Beta-None] when l 6∈ {l1 . . . ln}
(fun ?l:x→ e) l̃1:e1 . . . l̃n:en ∅̃:e′ → e[None/x] l̃1:e1 . . . l̃n:en ∅̃:e′

Figure 3: Classic mode reduction rules

Γ ` e : l:τ ′ → τ Γ ` e′ : τ ′

Γ ` e l̃′:e′ : τ

Γ ` e : ?l1:τ1 → . . .→ ?ln:τn → ?l:τ ′ → τ Γ ` e′ : τ ′

Γ ` e l̃:e′ : ?l1:τ1 → . . .→ ?ln:τn → τ
l 6∈ {l1 . . . ln}

Γ ` e : ?l1:τ1 → . . .→ ?ln:τn → l:τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

Figure 4: Classic mode typing for application

Expressions are the same, but since optional parameters can no longer commute with
non-optional ones, we can consider application as binary.

e ::= . . . | e l̃:e | e ?l:e

Reduction rules are given in figure 3, plus the original [Let] rule. In [Beta], labels are
simply ignored, and reduction progresses independently of them. [Beta-Some] and [Beta-None]

are simplifications of the original rules, since we need not bother about commutation. Ad-
ministrative rules are not needed anymore.

Typing differs in spirit: we add a congruence on types, so that non-optional labels can
be safely ignored.

l:τ → τ ′ ' l′:τ → τ ′

This congruence applies anywhere inside a type, but it does not apply to optional labels.
Typing rules are those of figure 2, where typing of function application is replaced by the 3
rules in figure 4. Theses rules each mimic one of the 3 reduction rules.

As before, we do not have the principal type property, but the problem is here limited
to optional parameters. The partial inference algorithm we provide also checks for inconsis-
tencies in the labeling: it is acceptable to apply a function whose parameters are labeled to
non-labeled arguments, but applying a function without labels on some label, or applying
with different labels both suggest an error. This checking can only be approximative, because
of the above congruence on types, but it is again accurate enough on known functions. Any
program typable in the standard system, and which does not use out-of-order application, is
also typable in classic mode, meaning that the two modes have a significant intersection.

While call-by-value semantics must be slightly adapted for these new reduction rules, most
of the discussion on values and compilation does still apply, since commutation is available
between optional arguments.

8 Conclusion

We gave an almost complete account of how labeled and optional arguments were introduced
in Objective Caml, from the dynamic semantics to the typed theory, and finally compilation.
Notice that here types play the role they had in early times of programming languages: they
provide information about the static shape of values, so as to be able to compile them effi-
ciently. Both their restrictiveness, and some unspecified parts of the semantics, are deliberate:
they intend to give way to an efficient, yet correct implementation.

7

We only presented a very succinct account of the classic mode semantics, since it is
essentially a cut-down version of the full semantics, and does not present the same technical
interest.

What we left out here is a detailed account of the compilation method, and a statement of
its correctness. This is mostly straightforward, but an explicit framework is needed to prove
the properties we just hinted. From a technical point of view, the more advanced compilation
method proposed in [FG95] may in fact be more interesting, particularly if one wants to deal
with a pure functional language.

Aknowledgements

This is an extension of previous work with Jun Furuse. Some modifications of the system are
the result of discussions with Pierre Weis, Damien Doligez and Xavier Leroy. Anonymous
referee comments were very helpful in improving both the form and the focus of this paper.
This research is supported by a young researcher grant from the Ministry of Education and
Science.

References

[AKG95] Hassan Aı̈t-Kaci and Jacques Garrigue. Label-selective λ-calculus: Syntax and
confluence. Theoretical Computer Science, 151:353–383, 1995.

[Dam98] Laurent Dami. A lambda-calculus for dynamic binding. Theoretical Computer
Science, 192:201–231, 1998.

[FG95] Jun P. Furuse and Jacques Garrigue. A label-selective lambda-calculus with op-
tional arguments and its compilation method. RIMS Preprint 1041, Research
Institute for Mathematical Sciences, Kyoto University, October 1995.

[GAK94] Jacques Garrigue and Hassan Aı̈t-Kaci. The typed polymorphic label-selective
λ-calculus. In Proc. ACM Symposium on Principles of Programming Languages,
pages 35–47, 1994.

[Gar99] Jacques Garrigue. The Objective Label Trilogy 2.04. Available at
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/, 1999.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Imple-
mentation. Addison-Wesley, Reading, Mass., 1983.

[Lam88] John Lamping. A unified system of parameterization for programming languages.
In Proc. ACM Conference on LISP and Functional Programming, pages 316–326,
1988.

[LDG+00] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-
lon. The Objective Caml system release 3.00, Documentation and user’s manual.
Projet Cristal, INRIA, April 2000.

[Led81] Henry Ledgard. ADA : An Introduction, Ada Reference Manual (July 1980).
Springer-Verlag, 1981.

[Ste84] Guy L. Steele. Common LISP : The Language. Digital Press, 1984.

8

